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LETTER TO THE EDITOR 

Asymmetric neural networks and the process of learning 

Giorgio Parisi 
Dipartimento di Fisica, I1 Universita’ di Roma ‘Tor Vergata’, Via Orazio Raimondo, Roma 
00173, Italy and INFN, Sezione di Roma, Italy 

Received 15 April 1986 

Abstract. In this letter we study the influence of a strong asymmetry ofthe synaptic strengths 
on the behaviour of a neural network which works as an associative memory. We find 
that the asymmetry in the synaptic strengths may be crucial for the process of learning. 

In order to understand how neural networks are able to learn and to work as associative 
memories, at the present moment it is convenient to consider very simplified models. 

A very interesting and widely studied model is the following: the neurons can be 
firing or quiescent and are represented by variables Si which may only take the values 
*1 and the synaptic strengths (the influence of the neuron i on the neuron k) are real 
numbers J k k .  The dynamics is very simple: it can be fully deterministic (the so-called 
zero temperature limit) or a finite amount of randomness may be present (finite 
temperature). 

In the Hopfield model (Hopfield 1982) the Ji,k are symmetric and the process of 
learning is the following: each time that a pattern pi is learnt (the pi are also *l) the 
J are changed according to the following formula: 

(1) new - 
J i , k  - J:kd+ pipK 

which is a generalisation of the original Hebb rule. 
The assumption of a symmetric distribution of the J has been criticised for not 

being realistic (if the neuron i influences the neuron k there is no reason why the 
neuron k should influence the neuron i ) .  If the Hopfield model were a model for a 
properly working memory, this criticism would not be very relevant. Indeed, it seems 
that a not too large amount of asymmetry in the synaptic strengths does not qualitatively 
change the behaviour of the system (Amit 1985). 

The aim of this letter is to show that the performance of the Hopfield model is not 
that which is required from a good memory; in particular, the learning procedure is 
quite problematic. In contrast, if the model is strongly modified in such a way that 
the asymmetry of the synaptic strength plays a crucial role, the memory performs much 
better and the learning can be done in a simple way. It may be possible for the 
qualitative differences between the two models to be experimentally observed. 

Before presenting the criticism of the Hopfield model we first summarise what is 
known about this model from both analytic and numerical computations (Amit et a1 
1985, Kinzel 1985, Mezard et a1 1986a). Let us work under the simplifying hypothesis 
that N is large (e.g. 100-1000) and that all the inputs are orthogonal and the number 
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of learnt patterns ( p )  is proportional to N :  

p = aN. 

It is normally assumed that an input pattern is presented to the network by forcing 
the state of the network to coincide with the input pattern. After this moment, the 
system evolves with its own dynamics and the output of the system is the state of the 
network after some time, If the network had a perfect memory, each time that the 
input pattern had some resemblance to one of the memorised patterns, the output 
should be the memorised pattern. 

If a is smaller than a critical value ( ~ 0 . 1 4 )  and the input pattern is sufficiently 
near to one of the memorised patterns, the retrieval procedure is successful with 
probability 1 when N - P ~  (apart from about a 1-2% discrepancy between the 
memorised pattern and the output pattern). On the other hand, if the input is not 
sufficiently near to one of the memorised patterns, the network is confused and it goes 
into some state which is very far from every memorised pattern. The nearer a is to 
the critical value 0.14, the nearer the input state must be to one of the learnt patterns 
in order to avoid confusion. When a becomes greater than the critical value the 
network is always confused; also, if the input pattern is one of the memorised ones, 
it becomes confused and goes into a state which is very far from every memorised 
pattern. 

These results hold exactly at zero temperature; if a non-zero amount of noise is 
allowed and a is not too small (greater than 0.05), the state in which the system stays 
near one of the learnt patterns is metastable. If the input pattern is near one of the 
memorised patterns the system goes into a state very similar to the learnt pattern but 
after a very long time the network becomes confused and it goes into some state which 
is very far from every memorised pattern. 

It has recently been recognised that the state of total confusion may be avoided 
by a simple modification of the generalised Hebb rule. For example, we can write 
(Changeaux et al 1986, Mezard and Nadal 1986) 

J;iw = (1 - h)J:y  + p.ip,K 

J;iw = g(J;’k” + P i P K  ) 

(3)  

(4) 

or more generally (Parisi 1986) 

where g is an appropriate non-linear function such that the J cannot become arbitrarily 
large (or small). 

If the parameter A is well tuned, only the last a N  patterns (a i= 0.03-0.05) which 
are learnt are correctly memorised, while the others are forgotten. In other words, the 
memory has a finite capacity and the learning of a new pattern forces the forgetting 
of an old pattern. In this way the memory never reaches the state of total confusion. 
This modification of the generalised Hebb rule is crucial if we want to understand 
how the learning process works in detail. 

The main disadvantage of a memory which works according to the Hopfield model 
is that, in both cases ( ( a )  retrieval of one of the input patterns and ( b )  confusion), 
after a short transient time the network goes to a time-independent state and it is not 
possible to discriminate between the two cases. In other words, the outside world 
which examines the output is unable to discriminate between a valid output ( a )  and 
an unreliable output ( b ) .  It is clear that a capability to discriminate between case ( a )  
and case ( b )  would be very useful: an error can be tolerated, if it is identified as such, 
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but the possibility of having non-recognised errors may affect the reliability of the 
whole neural system of which our memory is supposed to be one component. 

The incapacity to discriminate between case ( a )  and case (b) becomes really 
dramatic if we consider the learning mechanism in detail. The crucial question is the 
following: does the modification of the synaptic strength (according to a generalised 
Hebb rule) happen only when the network is requested to do so or can the synaptic 
strengths always be modified? In other words, does the network learn only when it is 
instructed to learn or is it the network which decides when to learn? 

The first option (learning under request) is clearly possible. For example, some 
chemical modifications of the environment of the network could trigger the application 
of the Hebb rule. In this letter we explore the feasibility of the second possibility, i.e. 
that the Hebb rule is always applied, with the exception of times when the network is 
confused. The new form of the Hebb rule should be 

if the network is not in a confused state or 

dJi,k( t) /dt  = 0 (5b) 
if the network is in a confused state, where t is the time. The synaptic strengths are 
modified only when the network is not in a confused state. 

In this way the behaviour of our ideal memory should be the following: the network 
remembers the states in which it has been for a sufficiently long time. In this way the 
memory learns a pattern if it is forced to stay in the corresponding state a sufficiently 
long time and, on the other hand, the process of retrieval of a pattern starts when the 
memory is set in the corresponding state for a short time and after the memory is left 
free to evolve according to its own laws. 

In other words, if a pattern is presented to the memory for a long time it is 
memorised; if it presented to a memory for a short time, the pattern is searched for 
in the memory. If the pattern is not found, the memory becomes confused and nothing 
happens. However, if the retrieval procedure ends with success the state of the neural 
network coincides with the found pattern for a certain time (during this time the pattern 
found becomes better memorised); at later times the memory jumps again in the 
confused states and the content of the memory is not changed until a new pattern is 
presented. 

If we disregard the case of short term memory and we consider only long term 
memory, this proposal makes sense only if the application of the Hebb rule is inhibited 
when the network is in a confused state. Indeed, in the absence of input the memory 
goes into a confused random state and after some time only this state would be 
memorised if the Hebb rule (equation ( 5 a ) )  were always operating. This problem is 
solved by the introduction of equation (56). 

The Hopfield model satisfies all the necessary requirements. Unfortunately, in this 
model (as we have already remarked) it is impossible to discriminate between the two 
cases ( ( a )  retrieval of one of the input patterns and (b) confusion). Our proposal is 
that the neural network should work as the Hopfield network with the main difference 
being that, when the input state is such that it does not lead to the retrieval of one of 
the learnt states and the network goes into a state of confusion, the state of the network 
becomes time dependent in a chaotic way. 

In this way, after the input has been presented to the system, if the Si are time 
independent, the retrieval of one of the input states has been completed; on the other 
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hand, if the Si are time dependent the network stays in a confused state. In other 
words, only the outputs that are time independent can be considered as valid outputs 
and the outputs which depend on time should be disregarded. 

If this happens, the Hebb rule can be modified in the following way: 

when f ( x )  is a function which is practically zero below a threshold (x,) and is very 
near to one for x greater than the threshold and $ ( t )  is the average over a time T of 
the status of the ith neuron (although s depends on T, we have not indicated this 
dependence in order to simplify the notation). 

In other words, the updating of the synaptic strengths (which is at the basis of the 
learning process) is sensitive only to the average value of the neurons in the most 
recent past and it happens only if the neurons do not flip from one state to another 
too quickly. 

Having established how our ideal neural network should work, we should discuss 
how one can realise a network which works in the way we have described. The claim 
of this letter is that strong asymmetry of the synaptic strengths is needed to reach this 
goal. We can arrive at this conclusion by studying the Hopfield model in detail. 

The simplest form of the dynamic of the neural network is the following; the time 
is discretised (in a realistic model the time steps are of the order of a millisecond) and 
in the so-called zero temperature limit the variables Si are updated by applying the 
following equation to all the neurons (sequentially or in random order): 

At finite temperature some noise is present, equation (6) holds only in an approxi- 
mate way and we have 

Si = sgn( h i )  with probability pi = 1/[ 1 + exp( - @ h i ) ]  (8) 

Si = -sgn( h i )  with probability 1 - p i .  

Obviously in the limit @ + 03 we recover equation (7). The great advantage of the 
Hopfield model is that it can be studied in great detail analytically because its properties 
coincide with those of a common statistical mechanical system. Due to the symmetry 
of the synaptic strengths we can define an energy 

and the probability distribution of the S at large time is given by the usual Gibbs 
formulat : 

P[SIa exP[-PE[SIl. (10) 

t This is not true for parallel updating in which equation (8) is applied to all the neurons simultaneously. 
It is only true if equation (8) is applied to each neuron at different times as stated in the text (independent 
updating). Also, parallel updating has a description in statistical mechanics and the differences are not very 
strong (generally speaking, the result on the large time behaviour is tme only if the temperature (1/p) is 
not strictly equal to zero; one should carefully note that the two limits, time going to infinity and temperature 
going to zero, do not commute). 
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The zero temperature dynamics corresponds to searching for the minimum of E[ SI 
using the fastest descent algorithm: each neuron flips its state (from firing to quiescent 
or vice versa) if the energy decreases by doing so. Each time that the neuron is flipped 
the energy decreases so that we must reach a stable state after a not too large number 
of steps. 

On the other hand, if the neuron strengths are asymmetric (J i ,k  # J k i )  the energy 
function does not exist anymore and the large time behaviour may be much more 
complicated at zero temperature. For example, we could have that the Si become a 
periodic function of the time (limit cycle). It is also possible that the length of this 
cycle is very large (proportional to exp( N ) ) ;  in this case we say that the system behaves 
in a chaotic way. 

We can be more quantitative by introducing the order parameter q ( t )  (Edwards 
and Anderson 1975, Mezard er a1 1986b) as 

It is well known that at low temperature q is different from zero (also for large 
average time T )  both when the network is near to one of the input states and when 
the network is confused. However, we would like it that when the network is a confused 
state q is zero (or small) and consequently the function f in equation ( 6 )  is very near 
to zero and the synaptic strengths are time independent. 

We have checked numerically that if the synaptic strengths are random and asym- 
metric (J i ,k  is independent from Jki), q remains zero also in the low temperature limit. 
In other words, in the equivalent of the spin glass phase for an asymmetric network, 
the system does not order itself in a random direction but has a chaotic behaviour. 

There are many ways in which the asymmetry may be introduced in the Hebb rule. 
For example, a synapse going from neuron i to neuron k may exist with probability 
p :  not all the neurons are connected one with the other (diluted network) and the 
dilution is done in an asymmetric way. In other words, there are N x N random 
variables c,k (c,,k = 0 or 1) such that = p :  only if Ci,k = 1 does the synaptic connection 
exist. If we apply one of the various generalised Hebb rules only to the connections 
which exist (i.e. C,k = l ) ,  we generate an asymmetric set of J, whose asymmetry is 
stronger for smaller values of p .  

It is clear that the various parameters of the model must be correctly tuned in order 
to avoid spurious states in which half of the network is near to one of the input states 
while the other half of the network is near to another input state (in the Hopfield 
model this is true when a > 0.03). 

The condition that the network should automatically go into the confused state 
(also after a successful retrieval operation) is the most delicate point (which we have 
not investigated numerically). It is very reasonable that (as in the Hopfield model) 
the ordered state is metastable and after some time it decays into the confused state 
only if a is sufficiently large. If the memory is blank when we start to use the memory 
and we learn the first patterns, a is by definition zero and some problems may be 
present in initialising the memory. It is rather likely that the suggestion (Changeaux 
et a1 1985) that the memory is not blank at the initial time will play a crucial role here, 
although with some imagination one could start to build a theory for the imprinting. 

We could also consider more complex models. The synapses are divided in two 
groups: the Hebb rule applies only to the synapses of the first group while the others 
are not modified by the learning process. The synapses of the second kind are needed 
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in order to guarantee that, no matter what happens to the synapses of the first kind, 
the ordered state is always metastable and the network jumps automatically to the 
chaotic state. For example, it may be possible that only the excitatory synapses 
participate in the process of learning while the inhibitory synapses are not modified 
during the learning and are responsible for bringing the system into the chaotic phase. 
It seems to me that a modification of this kind will strongly increase the robustness 
of the network. 

Summarising, we propose that a neural network learns automatically any input 
pattern which is presented to it for a long enough time without the need for any explicit 
chemical order and that a neural network of a long term memory is in a chaotic 
time-dependent state when it is not active. The correctness of these two proposals 
(especially of the second) can clearly be experimentally verified. This behaviour of 
the network is possible only if the synaptic strengths are sufficiently asymmetric. It is 
difficult at this stage to discriminate between the many possible models for the 
asymmetry because models (like the one proposed in this letter) in which we assume 
that the synapses are randomly distributed are probably not realistic because the 
process of connecting the neurons is not a pure random process but contains a strong 
deterministic part. 

It is a pleasure for me to thank D Amit, M Mezard, J P Nadal and M Virasoro for 
useful discussions on the subject of this letter. 
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